
Beyond Current Scheduling Programs 
Using an 

Extended Relationship Database System 
Copyright 2004 by Ron Winter Consulting LLC 

November 6, 2004 
 
 
ABSTRACT 
 
The core of CPM stands on the bedrock of two separate pillars; activities 
and relationships.  Every day we hear of new additions to the functionality 
of activities, but what of relationships?  Why can we not even produce a 
listing of relationship lags in sorted order? 
 
Relationships in all scheduling programs are under-represented in both 
functionality and breath of usability.  This paper investigates the current 
level of sophistication of relationship information and proposes extensive 
modifications that can be made to enhance the usability of scheduling 
programs.  This system is called an Enhanced Relationship Database 
System (ERDS.) 
 
With an ERDS, you can add relationship codes and notes, sort by any 
factor related to the predecessor or successor activity, filter out 
unnecessary relationships, maintain any number of scenarios, and update 
your schedule with the revised logic.  You can reverse preferential logic 
and accelerate schedules using a relative degree of ‘hard’ and ‘soft’ 
settings with cost or disruption as a factor.  You can even automatically 
add relationships to represent your resource leveling plan. 
 
 
BACKGROUND 
 
Physically, CPM schedules are just a collection of data about your project.  To 
facilitate matching the various pieces of different types of data, the data is 
typically stored in several different files per schedule and related to each other by 
unique attribute that they all have in common.  In this case, all of the files are 
typically linked to each other using the Activity ID Code.  Your activity costs are 
related to the resources by activity codes.   These in turn are related to other 
activity data such as duration and percent complete by Activity ID Code.  Most 
every piece of data in your schedule is directly related to one activity ID code or 
another. 
 
Relationships are a little different.  They are associated with two Activity ID 
Codes; the predecessor activity and the successor activity.  No one activity 
‘owns’ a relationship.  Relationships are shared by two activities.  This fact 
makes relationships stand apart from the other databases.  Even if you were to 



Extended Relationship Database System  Page 2 

  

add all of the other database files together to describe an activity, you would still 
need to have a separate file for relationships. 
 
Primavera Project Planner (P3) from Primavera Systems, Inc. keeps your data in 
a schedule relationship file with the following items, or “fields.” 
 

• Predecessor Activity ID 
• Successor Activity ID 
• Relationship Type 
• Relationship Lag 
• Is this relationship a ‘driving one’? (Yes/No) 

 
The last entry (Is this relationship a ‘driving one’) is not necessary to describe the 
relationship.  This is extra information that Primavera chooses to store to add 
more insight into the nature of the relationship.  In effect, this last entry extends 
the required data and adds functionality.  You could say that in a small way, P3 
uses an “Extended Relationship Database.”   
 
Many people believe that much more is needed to manage modern schedules.  
Many feel that the schedule relationships should be extended in types of data as 
well as in functionality.  This paper will present an entire system that extends the 
usability and increases insight into CPM schedule relationships. 
 
 
EXTENDED RELATIONSHIP DATABASE SYSTEM 
 
Relationships are much like activities.  By this we mean that if you consider 
relationship lags, they can take-up time just as an activity would.  You can say 
that relationships with lags are just ‘invisible activities.’  Unfortunately, most 
scheduling programs do not provide the same extensibility and functionality to 
relationships as they do to activities. 
 
In this paper, we propose to create an extension to complement the existing 
scheduling program and data base.  It will not take the place of the existing 
scheduling program, only complement it.  We will call this an Extended 
Relationship Database System (ERDS.)  Let’s look into why an ERDS is needed. 
 
 
Extensibility 
 
Over time, many new data fields have been added to schedule activities that are 
not absolutely required.  Remaining Duration is an example of just such an 
addition.  So are Actual Start and Finish dates.  The early versions of CPM 
schedules did not have these features.  Nowadays, we would be at a loss to 
perform our normal scheduling functions without these added, extended features. 
 



Extended Relationship Database System  Page 3 

  

In addition, scheduling programs like P3 [1]  also provide additional custom data 
items where you can define the extra data that you want to track for each activity.  
This allows you to track such things as planned dates, interim costs, and newly 
created features such as Longest Path Value without having to wait for 
Primavera to include it in the program as an upgrade to the software. 
 
 
Functionality 
 
Just having this extra data is not enough.  We need to be able to use it for sorting 
and filtering the database, grouping activities into sections, being able to print 
and export this data as needed.   
 
Another issue of functionality is being able to display and manipulate the 
information directly.  You can do this for activities but you cannot do this for 
relationships.  In P3, relationships must always be observed in connection to the 
predecessor or successor activity.  You cannot just display a list of all 
relationships; you can only show and manipulate the relationships for any given 
activity.   
 
To report on relationships, you must list all activities and then display the 
relationships for each.  You cannot ask for all relationships that have lags not 
equal to 0, or for all start-to-start relationships.  The lack of these types of reports 
makes it very difficult for the today’s Scheduler to properly review a schedule. 
 
 
What types of extensions could be added? 
 
Before you can actually use an extended relationship database, you need to 
create a presentation of it that does not depend upon the predecessor or 
successor activity.  The ERDS needs to be oriented around the concept of 
independent relationships to be effective.  This means that all of your information 
must be organized by independent relationship records. 
 
A unique relationship consists of the following key fields, 
 

• Predecessor Activity ID 
• Successor Activity ID 
• Relationship Type 

 
The database may contain duplicate records sharing any of the three fields 
above, but not all three.  P3 allows for each pair of activities to be able to have all 
four possible relationships at the same time.  Note that the ‘relationship lag’ and 
‘driving’ fields are not required to define unique records. 
 



Extended Relationship Database System  Page 4 

  

Note: In P3e and P3e/c [1], it is the internal task id and not the Activity ID Code 
that is unique.   As far as the User can see, a current relationship database for 
P3e consists of the following required fields, 
  

• Predecessor Project Name 
• Predecessor Activity ID 
• Successor Project Name 
• Successor Activity ID 
• Relationship Type 

 
Now that we have a reconfigured system specialized in displaying relationships, 
what types of extensions could be added?  The following is a partial list of what is 
possible.  Many more possibilities will be developed later. 
 

• Manipulate relationships, 
• Print and export relationships, 
• Maintain inactive relationships, 
• Provide a History of Changes, 
• Designate Hard versus Soft relationships, 
• Estimate relative importance of a relationship, 
• Manage Relationship Codes, and 
• Maintain Relationship Notes. 

 
 
What would you be able to do with these extensions? 
 
Manipulate Relationships 
 
Most current software packages are adept at manipulating activities.  Why is this 
functionality missing with relationships?   With a ERDS, you should be able to 
sort and filter on any of the following items, 
 

• predecessor Activity ID, 
• predecessor activity codes, 
• predecessor resources, 
• predecessor dates, 
• predecessor Total Float or Free Float, 
• successor Activity ID, 
• successor activity codes, 
• successor resources, 
• successor dates, 
• successor Total Float or Free Float, 
• driving relationships, and 
• any of the other extended relationship fields. 

 



Extended Relationship Database System  Page 5 

  

Specialized Review 
 
The CPM database is different from other databases in that there are inherent 
principles that guide good CPM schedules.  Such principles could be the basis 
for specialized reports about relationships.  A sort list of such specialized reports 
would include, 
 

• Review all relationships for proscribed requirements such as “no Start-to-
Finish relationships,” 

• Lags in daily schedules should be less then 5,  
• All activities missing a finish relationship, 
• Start-to-Start/Finish-to-Finish pairs. 

 
 
Deactivate Relationships 
 
Current software programs have only one type of relationships, active ones.  
There is no place for you to set-up and store alternate plans or scenarios except 
by making an entire different copy of your schedule.   
 
This method of keeping various copies of the same schedule violates the 
normalization principle of relational databases.  Over time, changes and status 
will be added to the ‘active’ schedule that will not be reflected in the ‘inactive’ 
scenario schedule.  Very soon, the inactive schedule becomes useless as a tool 
because it no longer is an exact copy of the original schedule. 
 
What if you could keep your alternate scenario relationships in the same 
schedule as your current plan?  Then with the ‘press of a key’ you could switch 
one set of relationships for another and instantly change your sequencing of your 
work.  Furthermore, it would be helpful to just be able to keep your deleted 
relationships on file just in case you change your mind or circumstances change. 
 
 
Print and Export Relationships. 
 
You should be able to use the sort and filter features to organize and print out the 
entire database for selected relationships or only just a formatted selection.  Also 
you should be able to export all the relationship data to a spreadsheet for further 
manipulation, formatting, and printing.  You should not need to export and re-
format the information to a spreadsheet in order to do this. 
 
 



Extended Relationship Database System  Page 6 

  

How About Extended Functionality? 
 
Once you open you mind to the possibilities available to you with an ERDS, you 
begin to see possible functionality that is not even related to activity 
manipulation.  Some such functions would include the following topics. 
 
 
Maintain Inactive Relationships 
 
Why should you be limited to only keeping your current relationships?  Why not 
keep inactive relationships that could be used in various contingencies?  How 
about keeping an intermediate staging plan that would accelerate parts of the 
project if later authorized or required?  How about another set of relationships 
that would describe the project with Stage 3 before Stage 2 instead of the other 
way around? 
 
 
Designate if the Relationship is Hard or Soft 
 
Some relationships represent real-world physical constraints.  For example, you 
normally can’t build the roof until the walls are built.  Clough, Sears, & Sears [2] 
call this a physical relationship.  Others call this required sequencing a “Hard” 
Relationship. 
 
Other relationships may describe softer constraints that are not based upon 
physical constraints but are never the less real and important.   In CPM in 
Construction Management, [3]  O’Brien calls this “preferential logic.”   
Relationships that depict crew timing from one activity to the next one requiring 
that same crew is such an example.  A more common term for preferential logic 
is “Soft” Logic. 
 
Expert schedulers concern themselves with more than just what predecessors 
are causing the timing of an activity to begin.  They wonder if the relationship is 
physically required (Hard) or if this activity timing is caused by a discretionary 
logical constraint (Soft) that might just as well be removed for the good of the 
project. 
 
Being able to isolate and identify Soft from Hard relationships from a schedule 
would be of large benefit.  Of course, you would need to be able to annotate your 
findings for reference.  Later, should a soft relationship become the focus of a 
delay or acceleration issue, it would be easy to evaluate if the soft relationship 
was still needed and investigate the results of eliminating that logical restraint. 
 



Extended Relationship Database System  Page 7 

  

Estimate the Relative Importance of a Relationship 
 
One technique for accelerating schedules without reducing the work is to 
selectively delete relationships.  If done correctly, this allows activities to begin 
earlier than they would have.  First, we should only consider eliminating only soft 
relationships, as the hard relationships are physically required.  But which of the 
soft relationships should we eliminate? 
 
The secret is to know just what relationships to delete that will cause the largest 
results with the least disruption.  Relationships could be evaluated based upon 
the size of the successor’s cost, resource, or duration.  This would give an 
indication as to which relationships could be deleted and have the smallest 
impact to the job. 
 
We call this the ‘weight factor’ of a relationship.  This is separate but linked to the 
hard/soft designation of a relationship.  When a hard or soft designation is added 
to the weight factor, you have a combination that we call a Relationship Priority.  
Selective acceleration would then be investigated by eliminating the softest 
relationships with the greatest weight as a global change in your schedule. 
 
 
Relationship Codes 
 
Activity Codes are very useful.  So are Relationship Codes.  You can designate 
those relationships that interface between phases of construction or soft crew 
scheduling and quickly bring them together for analysis and modification.  In 
effect, with relationship codes, you can treat a group of relationships in the same 
manner as you would do for one. 
 
Add a group of inactive relationships that designate alternating phasing and code 
them the same.  Then you can select all current phasing relationships and delete 
them in one step.  Select the other group of alternating phasing relationships by 
their code and activate the bunch.  In two steps, you have completely ‘re-wired’ 
the entire schedule network! 
 
 
Provide a History of Changes 
 
P3 does not keep a history of the changes that you make.  For the experienced 
professional, this is a serious oversight.  While we are designing our ERDS, we 
should add in the automatic feature of remembering every addition, deletion, and 
modification that our system makes to the P3 schedule.  We could print out a 
report or transfer this information over to a word processor for documenting our 
update. 
 



Extended Relationship Database System  Page 8 

  

While we are busy building our automated history of all changes, why not go one 
step further and add in the feature of being able to reverse any of our updates?  
Our program could read the history file and apply the reverse of that update to 
restore the P3 schedule back to the way it was before the update.   Of course, 
we would have to document this reversal in our history file as well. 
 
 
Relationship Notes 
 
Relationships come and go over the course of a project.  They are added to 
reflect a work plan or constraint.  The lags are modified to respond to certain 
events.  Sometimes the relationship is even deleted for acceleration purposes or 
to modify the work plan.   
 
A history tells you what was done but nothing tells you why it was done.  Was 
this relationship added to reflect a physical or preferential constraint condition?  If 
preferential, then what was the reason, what resource was being managed?  
Why did you use a lag and what did it represent?  Was the lag estimated, based 
on historical records, or a take-off?  What caused you to change it?  What was 
the relationship deleted and why?   
 
These are all crucial pieces of information that must be determined before delay 
analysis can begin and it is never available.  Imagine how better your 
documentation will be if these facts are documented at the beginning of the 
project and while the project is on-going instead of at the end. 
 
 
Automated Resource-Leveled Soft Relationships 
 
When P3 or P3e/c level a schedule using resources, certain activities may be 
delayed but no relationships are created to reflect this change.  All of the 
Primavera programs mentioned here create a report that indicates which 
activities were directly delayed due to resource constraints.  The P3 version of 
the report even identifies which resource caused the delay.   
 
An ERDS can read these resource leveling reports and indicate to the viewer 
which successor Activity IDs were directly delayed by leveling and what 
resources caused the delay.  A column is automatically added to the right of the 
successor resources column and any delayed successors are identified by 
delaying resource.  Note: Currently P3ec does not report on the delaying 
resource, so only a “*” is indicated in the delaying column. 
 
A new feature, called Resource Links has be added to analyze the Logic League 
relationship list and identify the most probable delaying predecessor activity for 
each delayed successor activity.  With P3 this also entails checking to see that 
the predecessor activity also has a matching delayed resource.  Once identified, 



Extended Relationship Database System  Page 9 

  

Resource Links creates the new, soft relationship and codes this in the Hard, 
Code, and Notes sections to identify this added relationship properly. 
 
The use of Relationship Code here is extremely useful.  With each newly added 
soft relationship coded to the same value, the User can add all of them to the 
schedule with one function.  The User can later remove these soft relationships 
in mass later when it is time the repeat the update/level process. 
 
 
IMPLEMENTATION 
 
A proper ERDS must be oriented to display and manipulate relationships 
independently of the predecessor or successor activities.  Due to this lack of the 
necessary functionality, you cannot just implement an ERDS inside of a standard 
scheduling program.  You need to develop an exterior program built along the 
necessary lines. 
 
In the same vein, it is difficult or impossible to extend the relationship databases 
of a standard scheduling program to accommodate all of the new data that you 
will need.  Existing relationship database also cannot deal with inactive 
relationships.  All relationships in a schedule are active.  An external relationship 
database is also needed. 
 
Creating and maintaining an external relationship database also brings its own 
problems.  Chief amongst the issues to be resolved is maintaining 
synchronization between the two relationship databases.  If a relationship is 
deleted, added, or modified between sessions of the ERDS, then the ERDS must 
automatically reflect this change.  In our implementation of the EDRS, we 
validate the existing ERDS database against the schedule that it is 
complementing every time you start-up the ERDS.  In a multi-user environment, 
this becomes even more complicated but we will not address that issue here. 
 
Much of the information displayed in the ERDS is dependent upon the activity.  
Since the Activity ID is already a key data element of each relationship, this data 
is already present.  To maximize speed and efficiency, instead of saving this 
redundant information in each extended relationship record, we will create little 
database in temporary memory related to Activity ID and then reference them 
when needed.  Information directly related to Activity ID to be stored in temporary 
memory includes, 
 

• Activity Description 
• CPM Dates 
• Planned (Resource) Dates 
• Activity Codes 
• Activity Resources 
• Total Float 



Extended Relationship Database System  Page 10 

  

• Free Float 
 
Because this information may change over time, it is read from the existing 
schedule every time that the EDRS is run.  Also performed during start-up is the 
validation of the existing information stored in ERDS.  Any relationships 
containing deleted activities are automatically marked as deleted.  The status of 
the active and inactive relationships in the EDRS is matched with that in the 
existing schedule relationship database.  Once complete, the ERDS looks like 
the following diagram. 
 
 

 
 
To implement the above theories, we created an ERDS called, “Logic League 
[4].”    It was necessary to create new software and not just extend the existing 
scheduling program for two reasons.  First, scheduling programs do not have 
relationship extensibility built-in.  Second, the display and manipulation of a 
relationship database required a new, different format from that provided by 
existing scheduling programs.   
 



Extended Relationship Database System  Page 11 

  

Logic League reads a Primavera Schedule and builds its own logical database 
that includes everything in Primavera and more.  You can view and manipulate 
your relationships like you do with activities in Primavera.  Save the extra 
information in a separate database and reuse it the next time you use Logic 
League. 
 
Now you can keep ‘unused’ logic relationships and apply them when you want.  
Swap out entire logical sections of your schedule for another set with just one 
function.  Special updating functions keep your Logic league database up-to-date 
with your Primavera schedule. 
 
Besides logical information, other data available to you includes, 
 

• Any two activity codes, 
• Early and planned dates, 
• Resource information, 
• Total and free float. 

 
With the above information, you can readily analyze the nature of each 
relationship.  Below is a screen shot of a typical Logic League display. 
 



Extended Relationship Database System  Page 12 

  

 
 
Each horizontal line represents a single logical relationship between two 
activities.  Predecessor information is displayed on the left in blue, followed by 
the relationship in black and then the successor information in green.  The user-
supplied information to the right of the splitter bar (not shown) includes hard & 
soft indicators, relative weights, priority values, relationship code, and notes.   
 
You sort the database by clicking on the column headers.  The current sort 
column is highlighted in dark blue.  A very light blue is used to automatically color 
the entire line depending upon the sort column entry.  Whenever the value 
changes, the line goes from light blue to white and back to light blue when that 
value changes again.  We call this a Horizontal Sort Break. 
 
The information in the grey at the bottom automatically changes when you 
change the currently highlighted line.  This information is an expansion of the 
necessarily condensed information in the current line.  It lists the current 
predecessor’s activity description and the successor’s activity description.  Above 
this (in light blue) is a complete expansion of the sort column description and the 
current value in that line.  In the example above, we are sorting on, “Pred Area” 



Extended Relationship Database System  Page 13 

  

and the value, “3” displayed is defined in Primavera as, “E3, Eastbound Aux 
Lane.” 
 
The figure below shows another screen of Logic League, this time with some of 
the resource and date information suppressed on the left of the splitter bar.  Now 
the User-definable data is displayed to the right of the movable splitter bar. 
Everything to the right of the splitter bar may be edited by the User. 
 

 
 
The white box in the lower right corner is the note for the currently selected 
relationship.  You can type and edit this field as you wish; using wrap-around text 
or multi-line formatting as desired.  When you are done, you can print the 
database or even save it to an Excel spreadsheet.   
 
 
FUTURE ENHANCEMENTS 
 
Many future enhancements are envisioned for Logic League.  Below are just 
samples of ideas that probably may be implemented. 
 
 



Extended Relationship Database System  Page 14 

  

Remaining Lags 
 
We plan to build in a function to calculate and display Remaining Lag.  Currently, 
the data field known as, “Lag” actually represents “Original Lag.”  It does not 
reflect the amount of lag remaining to be used.  This is especially problematic for 
lags that are currently crossing the data date.  These lags are neither at 0 days, 
nor are that at their original setting.  You cannot calculate an in-progress 
schedule without knowing Remaining Lag.  The original CPM did not have 
Remaining Duration, only (Original) Duration.  It is time for CPM to include 
Remaining Lag. 
 
 
Out-Of-Sequence Progress  
 
Logic League could provide an option where you can automatically insert a 
finish-to-finish relationship from the active activity to the activity that has been 
started out of sequence.  In effect, this will say the activity may have been able to 
start out-of-sequence, but it cannot finish until the preceding logic is complete.  In 
addition, an appropriate note should be added explaining why and when the new 
relationship was created. 
 
Note:  This procedure is also known as “Option 4” as suggested by Fred Plotnick 
in “CPM in Construction Management” [3], page 154. 
 
 
As-Built Function 
 
Logic League should have an optional function that will look at all completed 
relationships and adjust the lag to match the As-Built condition.  Perhaps there 
would be two functions, one for positive and one for negative lags.  This function 
would allow for quick schedule update where the Scheduler wishes to reflect the 
actual construction sequence and model the early starts of activities.  This 
feature would also be used to re-create an un-statused schedule that reflects the 
actual logic used. 
 
 
Switch Activities 
 
Upon occasion, it is necessary to switch the position of two activities.  In this 
case, the simplest situation involves deleting three relationships and adding three 
relationships.  Often in this situation, the lags are often ‘lost.’  Typically, switching 
two activities involves a lot more than three relationships.  It is a simple matter for 
an ERDS to analyze and generate all necessary relationships for this special 
function. 
 
 



Extended Relationship Database System  Page 15 

  

CONCLUSION 
 
An Extended Relationship Database System is desperately needed to unlock the 
potential hidden in relationships.  This system is both possible and practical right 
now if the existing CPM scheduling program is just complemented and not 
duplicated.  We have created and tested just a system called, “Logic League” for 
P3 and P3ec schedules.  The possibilities for advanced functionality are just 
beginning to be defined but already have tremendous potential and appeal. 
 
 
Ron Winter Consulting LLC 
11100 Gingerwood Way 
Rancho Cordova, CA 95670 
www.RonWinterConsulting.com 
 
 
[1]  P3 Software by Primavera Systems, Inc., Three Bala Plaza West, Bala 
Cynwyd, Pennsylvania.  Also manufacturers of Teamplay, P3e, and P3ec 
software (now called ‘IT Project Office,’ ‘Maintenance & Turnaround,’ 
‘Engineering & Construction.’) 
 
[2] Construction Project Management, Fourth Edition by Richard H. Clough, Glen 
A. Sears, and S. Keoki Sears, Copyright 2000 by John Wiley & Sons, Inc.  
 
[3] CPM in Construction Management, Fifth Edition by James J. O’Brien & 
Frederic L. Plotnick, Copyright 1999 McGraw-Hill. ISBN 0-07-048269-1 
 
[4] Logic League Software. Copyright 2004 by Ron Winter Consulting LLC, 
www.RonWinterConsulting.com. 
 
 


